CHARTS: Properties of Powder Metallurgy Electric Motor Materials.

Posted by Fran Hanejko - August 03, 2021

Why are magnetic materials important? Without magnetics, modern technology wouldn’t exist. They’re in motors, transformers, cars, and so on. And powder metallurgy materials are often the best way to deliver the key magnetic properties that literally drive these applications.

Consider the following charts and information a nice, little handbook of advanced magnetic materials and their properties. Even competing materials will be introduced!

Why Do Powder Metallurgy Materials Need to Be Magnetic?

Glad you asked. Engineers use magnetism to convert electrical energy to mechanical energy. Some of the most obvious examples are:

  • Electromagnetic generator design
  • Alternators
  • Hydropower
  • Transformer core material selection (to supply constant voltage)

Advanced Powder Metallurgy Magnetic Materials

Ferromagnetic materials (ones that are magnetic and contain iron) are great for those seeking advanced powder metal parts. They include:

  • Iron
  • Nickel
  • Cobalt
  • Alloys of these materials

They can also be ferrites or iron oxide compounds. For more detailed information on different metals used in powder metallurgy, scroll below.

The high permeability of ferromagnetic materials is a key characteristic. This quality is great for applications in which you need lightning-fast response to an applied current.

About the Magnetic Performance of Your Powder Metal Parts

Magnetic performance is a function of:

  • Alloy system used
  • Density of final part
  • Saturation induction and magnetic permeability, which are influenced by density
  • Sintering temperature
  • Carbon and nitrogen contents after sintering

Ferrous Sintered Magnetic Materials in Powder Metal -- Density & More

powder metallurgy materials

The chart above gives you a good idea what to expect with powder metal material properties. “Induction” refers to magnetic induction, aka magnetic flux or flux density. These terms refer to the process in which a material is magnetized by an external magnetic field.

(Related article: Full flow chart of material possibilities, including for structural parts)

Property Comparison

Sometimes you need some strength to compliment the magnetic properties of your device. The table below shows a comparison of two powder metal alternatives to a common steel used in electrical applications.

powder metallurgy materials

AISI 1008 is a common carbon steel. Ancorsteel 45P is a grade of powder metal that contains 0.45% phosphorous or ferrophosphorus. The 1000B is pure iron.

Think of 1000B as your base material for DC applications. The 45P is more advanced, though still less advanced than, say, a 3% silicon material. These two are also geared toward DC applications.

The SMC 700 1P, 3P, and 5P soft magnetic materials you see here are all specialized for AC applications.

Whatever your magnetic application, the name of the game is good magnetic performance that still balances mechanical performance.

More on Metal Types

Stainless Steel

Stainless steels used in powder metallurgy are mainly ferritic grades mainly used in corrosive environments.

Martensitic stainless grades 409L and 434L are widely used in magnetic sensor applications where corrosion resistance is important.

Stainless steel generally has lower induction than iron or iron-phosphorus systems.

Iron-Nickel Materials

Iron-nickel pre-alloys are 50% nickel and 50% iron. Expect high-magnetic-permeability materials and a rapid motion with low coercive force -- think of the old dot matrix printers.

Low induction and low applied magnetic fields are the trademarks of iron-nickel.

Because of the high nickel content of this alloy, the cost is high.


Iron-phosphorus materials feature high induction, strength, and hardness. Its resistivity is merely so-so.

It’s notable that this alloy’s ductility allows for riveting operations.

Applications for this metal include:

  • Electric stator core and rotor material for low-speed stepper motors
  • Electric starter motors and pole caps
  • Actuators for valve control


Iron-silicon sintered parts respond better than iron-phosphorus sintered parts at moderate frequencies. This powder material is used in actuators where impact is involved, such as impact printer heads.

Soft Magnetic Vs. Hard Magnetic Material

Soft magnetic materials can be easily magnetized and demagnetized. Examples include:

  • Iron
  • Nickel-iron
  • Lamination steel

“Soft” in this case refers solely to the magnetism and has nothing to do with the material’s strength or hardness.

Hard magnetic materials, as you probably guessed, are very difficult to magnetize and demagnetize. Examples include:

  • Ferrites
  • Iron-neodymium-boron
  • Samarium–cobalt

Hard magnetics see popular use as electric motor core materials.

Wait, What Is a Soft Magnetic Composite?

A soft magnetic composite (SMC) is an iron powder coated with an insulating layer that can be used in AC electrical applications. Electrically insulating boundaries offer unique magnetic performance:

  • High magnetic flux density
  • High torque
  • Reduced core loss

SMC vs- lamination core loss frequency Chart - properties of powder metallurgy electric motor materialsMost published data evaluates the core losses of lamination steel based on a single sheet. But what happens when you stack them? SMCs start to outperform them at as low as 60 Hz, as you see above.

Note how these parts outperform electrical steel lamination assemblies, even at larger heights:

properties of Powder Metallurgy Electromagnetic Motor Material --Core-Loss-chart

The three most frequently used grades by top powder metal parts manufacturers are the 1P, 3P, and 5P materials mentioned earlier. Other grades of soft magnetic composite are available for higher-frequency applications. Since these are advanced materials, consult with Horizon for the nitty-gritty details.

B-H Curves of Soft Magnetic Composite Vs. Lamination

electric motor material chart - B-H Curve - powder metallurgy SMC vs- LaminationThis B-H curve chart shows the performance of soft magnetic composite versus a frequent competitor, laminations. The chart shows the relationship between magnetic flux density (B) and magnetic field strength (H) for a particular material.

Induction of soft magnetic composites is a function of density. Saturation induction of composites is a function of density according to the following equation:

Bs = 2.2 x density (g/cm³) / 7.85

Bs is measured in teslas.

These are key values that engineers and purchasers should look at when choosing magnetic materials. It’s all about the magnetic response as you apply a field and remove a field. It’s truly helpful stuff for purchasers looking to get on the same page as their parts supplier. And if it’s all too confusing, just ask for help!

Applications of Soft Magnetic Materials

Typical applications for sintered magnetic powders include:

  • Flux return paths for DC motors
  • ABS wheel sensors
  • Solenoid plungers and bodies
  • EGR valve bodies
  • Electric rotor material for permanent magnetic motors
  • Magnetic material for loudspeakers

Sintered powder metal can provide a range of magnetic properties. Secondary processing can influence permeability and coercive force.

Disclaimer: Soft magnetic composites, while generally amazing, are not sintered. As such, they are brittle and are not recommended for rotating components. We’ve exhaustively covered all the good stuff soft magnetic composites can do here.

Need More Information? Expertise? Confusing Charts?

We have many more charts and resources that get into the complexities of electromagnetic motor design materials:

  • Mechanical properties of powder metallurgy's 1P, 3P, and 5P
  • Effect of temperature on part density
  • Compressibility comparisons
  • Much more

Check out the Engineers' Hub for Electric Motor Efficiency:
Engineers' Hub for Electric Motor Efficiency - Click Here

(This article was originally published in October 2018 and was recently updated.)

Topics: Powdered Metallurgy, Magnetics, Materials, Applications, Properties, sintering, motors

Recent Posts

Can Electric Wheel Hub Motors Be Even More Efficient?

read more

Core & Hysteresis Loss in Induction Motors: SMC Vs. Steel Lamination

read more

How to Reduce Rare-Earth Motor Magnet Use With Soft Magnetic Composite

read more